SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "LAR1:cth ;pers:(Johnsson Filip 1960);pers:(Skagestad R.)"

Sökning: LAR1:cth > Johnsson Filip 1960 > Skagestad R.

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Haugen, H.A., et al. (författare)
  • Infrastructure for CCS in the Skagerrak/Kattegat region, Southern Scandinavia: A feasibility study
  • 2013
  • Ingår i: Energy Procedia. - : Elsevier BV. - 1876-6102. ; 37, s. 2562-2569
  • Konferensbidrag (refereegranskat)abstract
    • This paper gives an overview of results from a project which explored the feasibility of establishing a CO2 Capture and Storage infrastructure in the Skagerrak/Kattegat region of Southern Scandinavia. This involves assessment of the technical and economic parameters of the complete CCS chain and, in particular, identification of possible storage locations. The project ran from June 2009 to December 2011. Emissions from three major industrial clusters in the Skagerrak/Kattegat region - Gothenburg in Sweden, Grenland in Telemark County, southern Norway and Aalborg in Denmark - were targeted. Both emissions from process industries as well as power plants were included.
  •  
2.
  • Jilvero, Henrik, 1984, et al. (författare)
  • Techno-economic evaluation of an ammonia-based post-combustion process integrated with a state-of-the-art coal-fired power plant
  • 2014
  • Ingår i: International Journal of Greenhouse Gas Control. - : Elsevier BV. - 1750-5836. ; 31, s. 87-95
  • Tidskriftsartikel (refereegranskat)abstract
    • A techno-economic evaluation of the application of an ammonia-based post-combustion CO2 capture system to an existing, state-of-the-art, coal-fired power plant. The study comprised an assessment of the ammonia-based capture process together with a detailed cost analysis, based on which the overall design of the capture process is presented, including a power plant integration strategy and estimates of the specific CO2 capture cost (€/tCO2). The evaluations of the power plant and the CO2 capture plant were based on process modeling. The cost analysis was based on the installed cost of each unit in the equipment list derived from the process simulation, which was determined using detailed-factor estimation. We show that the steam required for a CO2 capture efficiency of 90% lowers the electric output from 408.0MWel to 341.8MWel. The capital expenditure related to the retrofit of the reference power plant with CO2 capture is 230M€ and the operating expenditure is determined to be 66.5M€/year, corresponding to a relative capture cost of 35€/tCO2. Furthermore, the present work proposes design improvements that may reduce the cost of capture to 31€/tCO2.
  •  
3.
  • Johnsson, Filip, 1960, et al. (författare)
  • Linking the Effect of Reservoir Injectivity and CO 2 Transport Logistics in the Nordic Region
  • 2017
  • Ingår i: Energy Procedia. - : Elsevier BV. - 1876-6102. ; 114, s. 6860-6869
  • Konferensbidrag (refereegranskat)abstract
    • We compare the cost for CO 2 -transport by ship with cost for pipeline transport in the Nordic region as a function of transport volume and distance. We also calculate the pipeline volumetric break-even point yielding the minimum CO 2 volume required from a specific site for pipeline to become the less costly transport option and finally, we investigate the effect injectivity may have on the choice of reservoir and transport mode. Most stationary CO 2 -emissions in the Nordic region originate from emission intensive industries such as steel, cement and chemical plants and refineries. Typically, their emissions are modest (less than 1 Mt per year) compared to large coal fired power plants, while distances to potential storage sites are considerable, often 300 km or more. Hence, build-up of clusters of emission sources and CO 2 -volumes is likely to take time and be costly. At the same time, many of the emission sources, both fossil based and biogenic, are located along the coast line. The results imply that due to modest CO 2 -volumes and relatively long transport distances CO 2 transport by ship is the least costly transportation option for most of the sources individually as well as for most of the potential cluster combinations during ramp-up of the CCS transport and storage infrastructure. It is furthermore shown that cost of ship transport increases modestly with increasing transport distance which, in combination with poor injectivity in reservoirs in the Baltic Sea, indicate that it may be less costly to transport the CO 2 captured from Finnish and Swedish sources located along the Baltic Sea a further 800-1300 km to the west by ship for storage in aquifers with higher injectivity in the Skagerrak region or in the North Sea.
  •  
4.
  • Kjärstad, Jan, 1956, et al. (författare)
  • Recommendations on CO2 transport solutions
  • 2015
  • Rapport (övrigt vetenskapligt/konstnärligt)abstract
    • The aim of this report is 1) to recommend transport solutions for CO2 sources in the Nordic region, here defined as the least costly transport mode for the selected CCS cases in NORDICCS and 2) to analyze the potential for establishment of CO2 clusters by means of a transportation network around the selected CCS cases in order to reduce the transportation cost. Comparing cost for pipeline transport with cost for ship transport, it is concluded that both for the majority of the selected cases as well as for most of the emission sources in the region, ship transport will be the least costly transport mode for each source individually. It is also concluded that ship transport is the most appropriate transport mode for most of the potential clusters in the region during a ramp-up phase. This is closely related to underutilization of pipelines and risk taking in connection with underutilized pipelines. For distances shorter than 100 km and volumes smaller than 1 Mtpa, e.g. corresponding to a typical collection system containing multiple coastal sources, it has been calculated that onshore pipeline in most cases will be the least costly transport solution. More generally, it can be stated that the break-even distance where ship transport becomes least costly than pipeline transport increases as the volume increases. Yet, it should be emphasized that discharge from a ship offshore and positioning of smaller ships during injection will need to be demonstrated. An obvious but still important conclusion is that constrained storage capability may have a profound impact on design and cost of a CO2 transport system. In fact, a poor storage capability in the reservoirs in the Baltic Sea may render ship transport to Gassum and Utsira a less costly transport and storage option than the reservoirs in the Baltic Sea. Finally, it is concluded that in the Nordic region, the Kattegat-Skagerrak area probably offers the best opportunities for a Nordic CCS system, possibly driven initially by CO2 EOR which potentially may require a start-up already in 2020.
  •  
5.
  • Kjärstad, Jan, 1956, et al. (författare)
  • Transport of CO2 in the nordic region
  • 2014
  • Ingår i: Energy Procedia. - : Elsevier BV. - 1876-6102. ; 63, s. 2683-2690
  • Konferensbidrag (refereegranskat)abstract
    • NORDICCS is a virtual CCS networking platform aiming for increased CCS deployment in the five Nordic countries. This paper reports from work investigating options for CO2 transport infrastructure in the Nordic region. Five specific CCS cases have been selected from which capture is analyzed in detail and from which CO2 transport cost has been calculated assuming CO2 being captured only at the site itself or, assuming the selected capture site develops into a CO2-hub with CO2 from several adjacent sources. In the latter case cost has been calculated defining for what volumes pipeline transport becomes less costly than corresponding ship transport. Additionally, cost for both pipeline and ship transport has been calculated as a function of distance and volume in order to apply these calculations to derive the least costly transport mode for the fifty-five largest sources in the region with a coastal location. Also, the effect on cost for systems that will require ramp-up (i.e. transported volumes increase over time) has been calculated. Finally, an analysis of the potential for build-up of clusters in the region was performed. The work clearly shows that ship transport is the least costly transport option, not only for the five selected cases individually but also for most of the emission sources located along the coastline. The work also shows that ship transport is the least costly transport option for most of the potential clusters in the region during the ramp-up phase. An obvious but still important conclusion is that constrained storage capability and injectivity may have a profound impact on design and cost of a CO2 transport system.
  •  
6.
  • Normann, Fredrik, 1982, et al. (författare)
  • Partial Capture of Carbon Dioxide from Industrial Sources - A Discussion on Cost Optimization and the CO2 Capture Rate
  • 2017
  • Ingår i: Energy Procedia. - : Elsevier BV. - 1876-6102. ; 114, s. 113-121
  • Konferensbidrag (refereegranskat)abstract
    • This work discusses the cost optimal capture rate of absorption based carbon capture processes by a combination of process simulations and cost-estimation. The influence of the quality of the CO2 source (quantity, continuity and CO2 concentration) and the availability of low cost heat on the absolute and specific capture cost are highlighted. The results stress that partial capture of CO2 could lower the specific capture cost (€/ton CO2) and that the relation between capital expenditure and lowered energy demand should be reconsidered for cases with access to low-cost heat.
  •  
7.
  • Òsk Gardarsdòttir, Stefanìa, 1987, et al. (författare)
  • Investment costs and CO2 reduction potential of carbon capture from industrial plants – A Swedish case study
  • 2018
  • Ingår i: International Journal of Greenhouse Gas Control. - : Elsevier BV. - 1750-5836. ; 76, s. 111-124
  • Tidskriftsartikel (refereegranskat)abstract
    • In this work, the investment required to apply CO2capture to large-scale industrial sources is assessed and discussed in a case study of Sweden - a highly industrialized region with relative proximity to large and well-documented storage sites in the Norwegian North Sea. The Swedish process industry is characterized by a large share of biogenic emissions, and therefore has a considerable Bio-Energy with Carbon Capture and Storage (BECCS) potential. The capital cost for CO2capture is estimated for a standard MEA-based CO2absorption process. The CO2absorption process is applied to several industries – pulp and paper, oil and gas, steel, cement and chemical production – and dimensioned using process modeling. The equipment cost is subsequently estimated using a detailed individual factor estimation method. The capture costs are compared to estimates of the cost for transport and storage.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy